If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55-6y^2=31
We move all terms to the left:
55-6y^2-(31)=0
We add all the numbers together, and all the variables
-6y^2+24=0
a = -6; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-6)·24
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-6}=\frac{-24}{-12} =+2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-6}=\frac{24}{-12} =-2 $
| 19y2+15y=0 | | 125^x+5^(3x+1)=200 | | 67+x=24 | | y+40=79 | | 38-y=22 | | 49+y=67 | | 56-y=23 | | 22-y=18 | | 65-y=28 | | 2^x-4=3^2x+5 | | 2x+3x-1+x=180 | | -7+v/2=-1 | | Y-1=3y-7 | | -8(-8x-6)=2x+7 | | 15-40=5b+120 | | 13x+2=3x-4+5x-7=180 | | 15b+6=13b+8 | | 15b+6=13b | | 2y-5=-29 | | -15x+1=3x-10 | | 16+8x=5x+15 | | 3^x+1=4^x-1 | | 4^7x=15 | | 14-x/6=34 | | 8x+1/2(3x+1)=12 | | 28-3y=20 | | 180=6x+16 | | 142=11x-17 | | 13=3x-35 | | 6-6n=-6n+6 | | 6d-7=5+6d | | -10u-9=1-10u |